01_arithmetic geometric sequences.notebook

WY7XA3P

${ }^{W}$ What is $B_{\text {right and }} \mathscr{H}_{\text {sks }}$ a Lot of $^{\text {Questions? }}$

For each exercise, write a pattern of numbers, then find the LAST number you write in one of the boxes at the bottom of the page. Write the exercise letter in that box.

Write the next three numbers in each pattern.

B. $\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}$,

E. $\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \square, \square, \square$
U. $2,3 \frac{1}{2}, 5,6 \frac{1}{2}$,
 $\square \cdot \square$
A. $100,81,64,49$, \square
\square \square
D. $1000,100,10,1$, \square
\square
\square
A. $1,3,6,10$, \square
\square
\square
U. 1, 3, 9, 27, \square
\square \square
H. $1, \frac{1}{4}, \frac{1}{16}, \frac{1}{64}, \square, \square, \square$

The figures shown below are made with toothpicks. Draw the next two figures in each pattern. Then count the number of toothpicks needed for each figure.

R.

B.

Solve.
N. Antonio has $\$ 80$ in his savings account. He plans to add $\$ 32$ each month for the next 6 months. How much will Antonio have in his account at the
end of each month?
L. There was already 14 in . of snow on the ground when the blizzard started. Each hour for the next 8 hours, 2.5 in . of snow fell. How much snow was on the ground at the end of each hour?
W. Altus is climbing 3000 ft to the top of a mountain. The temperature was $60^{\circ} \mathrm{F}$ when he started, but he expects it to drop 3.6° with each 1000 ft of
elevation gain. Find the expected then elevation gain. Find the expected temperature after each $1000-\mathrm{ft}$ gain.

In math, properties are statements that are true for any numbers.
They justify steps when simplifying expressions and solving equations.
(COMMUTATIVE Main dea: the order in which numbers are
Property

ADDITION EXAMPLES

- $a+b=b+a$
- $3+5=5+3$
- $2+(4+6)=2+(6+4)$
- $3+(8+1)=(8+1)+3$
added or multiplied does not matter MULTIPLICATION EXAMPLES
- $a \times b=b \times a$
- $3 \times 5=5 \times 3$
- $2 \times(4 \times 6)=2 \times(6 \times 4)$
- $3 \times(8+1)=(8+1) \times 3$

ASSOCIATIVE
Main Idea:
the way numbers are grouped when Property added or multiplied does not matter

ADDITION EXAMPLES
. $1+(2+3)=(1+2)+3$

- $a+(b+c)=(a+b)+c$
. $(8+5)+2=8+(5+2)$
. $3+(x+y)=(3+x)+y$

MULTIPLICATION EXAMPLES
$.1 \cdot(2 \cdot 3)=(1 \cdot 2) \cdot 3$
. $a(b \cdot c)=(a \cdot b) \cdot c$
. $(8 \cdot 5) \cdot 2=8 \cdot(5 \cdot 2)$
$.3 \cdot(x-y)=(3 \cdot x) \cdot y$

IDENTITY
Property

ADDITION EXAMPLES

- $a+0=a$
- $5+0=5$
- $x \cdot y+0=x \cdot y$
. $1 / 3+0=1 / 3$

MULTIPLICATION EXAMPLES

- $5 \times 1=5$
- $\frac{x+y \cdot 1=x \cdot y}{1 / 3} 1=1 / 3$
$1 / 3 \cdot 1=1 / 3$

Adding the opposite $=0$
INVERSE
property multiplying the reciprocal is

ADDITION EXAMPLES

- $a t-a=0$
- $5 t-5=0$
- $\frac{1}{3}+-\frac{1}{3}=0$
- $x+-x=0$

MULTIPLICATION EXAMPLES
. $a \cdot \frac{1}{a}=1$
$5 \times \frac{1}{5}=1$

- $\frac{2}{3} \times \frac{3}{2}=1$
$x \cdot \frac{1}{x}=1$

PROPERTY OFZERO	Main Idea: Multiplying by zero $=0$
$\cdot X \cdot O=0$	ExAMPLEs

DISTRIBUTIVE Main near: multiplying by the Sum of property the numbers equals the sum of the two products.
. $a(b+c)=$
$\cdot 2(3+4)=$
Name That Property!

1. $4+(a+b)=(4+a)+b$

Associative
2. $2(x+9)=2 x+2 \cdot 9$

Distributive
3. $(2 x) \cdot 1=2 x$

Identity
4. $(m+n)+3=(n+m)+3$

Commutative
5. $(5-k) \cdot 0=0$
6. $7(w+3)=(w+3) 7$
zero
Commutative
7. Name the additive inverse of 16 .
$-16 \quad(16+-16=0)$
8. Name the multiplicative inverse of $\frac{3}{7} \cdot \frac{7}{3} \quad\left(\frac{3}{7} \times \frac{7}{3}=1\right)$

$$
\frac{7}{3}\left(\frac{3}{7} \times \frac{3}{3}=1\right)
$$

